Objectives 1.White book: Read Chap 3 & p 77-98 & 1082.Black book: Read Chap 3 & p75-96 & 106 ### Objectives: - 1. List metric measurement units for microorganisms and convert to other metric units (m, mm, um, nm). - 2. Identify parts & functions of the compound light microscope. - 3. Define/calculate total magnification & resolution. - 4. Compare, contrast, and identify uses (diseases/organisms) for brightfield, darkfield, fluorescent, electron-transmission, and electron-scanning microscopy. - 5. Differentiate, compare, and explain the appearance and uses of each of the following: acidic & basic dyes, simple, differential & special stains, capsule, endospore, acid-fast and flagella stains. 2/4/2013 Ch 3 & 4 Microscopy & Cell Componenets ## Objectives, Cont'd - Identify the functions of the cell/plasma membrane, chromatophores/thylakoids, nucleoid, ribosomes, endospores (including location), inclusions. - Transport: passive (simple diffusion, osmosis, facilitated diffusion), active transport, hypertonic, hypotonic, isotonic, osmotic lysis, plasmolysis - 13. Discuss several pieces of evidence that support the endosymbiotic theory of eukaryotic evolution. - Describe the overall structure and defining characteristics of prokaryotes, as compared to eukaryotes. - On given slides identify shape, gram reaction, arrangement, type of stain. 2/4/2013 Ch 3 & 4 Microscopy & Cell Componenets # Objectives, cont'd - List specific chemicals that are used for each type of stain in the objective above, primary stain, mordant, decolorizer, counterstain. - 7. Gram stain: list the steps, purpose, and the appearance of GP & GN cells after each step. - 8. Identify the 3 basic <u>shapes</u> of bacteria <u>and</u> secondary arrangements. - 9. Describe the structure & function of the glycocalyx, flagella (including arrangement), axial filaments, fimbriae, pili. Identify flagellar arrangements. - 10. Compare & contrast the cell walls of GP bacteria, GN bacteria, archaea, mycoplasmas, and mycobacteria. (Including composition, antibiotic & chemical resistance, presence of toxins, staining reactions, effect of penicillin, lysozyme, etc.) 2/4/2013 Ch 3 & 4 Microscopy & Cell Componenets | | Measurement Units & Terms | | |----|--|---| | 1. | <u>Units</u> | | | | A. Micrometer (μm) = | | | | B. Nanometer (nm) = | | | | i. Example: Convert 21.5 nm to m | | | | • | | | 2. | Total Magnification | | | 3. | Resolution: Distance apart needed to see(Ability to see) | | | | | | | | | | | | 2/4/2013 Ch 3 & 4 Microscopy & Cell Components | 4 | | Resol | ution & Refractive Index | | | | | | |----------|--|--|--|--|--|--| | A. Res | olving power = | | | | | | | N.A. | depends on: | | | | | | | i | of material between lens & | | | | | | | S | lide. | | | | | | | ii. T | heof most divergent light ray | | | | | | | B. To ir | B. To improve resolution: | | | | | | | i | | | | | | | | ii | | | | | | | | C. Impr | rove conditions but NOT resolution: | | | | | | | i | | | | | | | | ii | 2/4/2013 | Ch 3 & 4 Microscopy & Cell Componenets 5 | | | | | | | Using oil does improve resolution, as it increases the | Unrefracted Oil immersion objective lens | |---|---| | numerical
aperture, which
will cause a
better (smaller)
resolving power
number | Without immersion most light is refract and lost Air Glass sl | | | Condenser lenses Light source | | 2/4/2013 | Ch 3 & 4 Microscopy & Cell Componenets | | Scope | Enhanced by | <u>Advantages</u> | <u>Uses</u> | |--|--|---|---| | Light, Brightfield:
Background
Visible light
Res:
Mag: | & light | Inexpensive
Easy to use | Live specimens
(unstained)
Stained
specimens
Bacteria,
protozoa | | Light, Darkfield: Background & microbes Same | N/A | Easier to see microbes | Live microbes: | | Light, Fluorescent: Background & microbes Same | Fluorescent dyes: Fluorescent dye on to microbe nicrobe fluoresces | directly from specimen, w/o culture Detection of microbes compared to other light microscopy | When immediate
diagnosis neede
When cultures
aren't avail, or
take long | | <u>Scope</u> | Enhanced by | <u>Advantages</u> | <u>Uses</u> | |---------------------------------|----------------------------------|--|--| | Electron, Scanning Res; Mag; | | 3-D
Book from U of I | Surfaces
structures -
eukaryote to
virus | | Electron, Transmission Res Mag | Stain w/+ salt of
heavy metal | res & mag DISADVANTAGE: Need slice as e- can't All e- scopes due to killing, & fixing under vacuum | Virus particles,
bacterial
flagella, _
cell structures,
protein
molecules | | Scanned-Probe Res 1/100 of atom | Ch 3 & 4 Microscopy & | Res No special prep | Map atomic & molecular shapes & processes, ie. DNA, fibrin (clot) formation | | Electronbeam Electronagnetic condenser fins Specimen Viewn open condenser fins Specimen Viewn open condenser fins Specimen Viewn open condenser fins Specimen Specimen Specimen Specimen Specimen Specimen Specimen | Pinary electron beam Electromagnetic lenses Viewing screen Electron collector Bectron | Fig 3.8
Transmission vs.
Scanning | |--|--|---| | | The state of s | | | (a) Transmission. (Top) In a transmission
electron microscope, electrons pass through
the specimen and se scattered Magnetic
lenses focus the image orto a fluorescent
scene or photogramic plate (Bottom) This
collected transmission exclude micrograph
collected transmission exclude micrograph
that the properties of the properties of the pro-
training that the properties of the properties of the
transmission of the properties of the pro-
training transmission of the properties of the
transmission of the properties of the pro-
perties of the properties of the properties of the pro-
perties of the properties of the properties of the pro-
training transmission pro-
trai | (b) Scanning. (Top) ha scanning electron microscope, primary electrons sweep across the specimen and whose electrons from its surface. These secondary electrons are picked up by a collectric amount of the property of the property electrons are picked property of the property electrons are picked property of the property electrons in this colorized scanning electron micrographs (SEAT), the surface structures of a Paramacum can be seen. Note the three-dimensional appearance of this cell, in contrast | renets | | _ | | | | | | | | |------------|----------------------------------|--|----|--|--|--|--| | | Stains-Slide Prep & Basic Stains | | | | | | | | <u>Sli</u> | Slide Prep: | | | | | | | | 1. | <u>Smear</u> | | | | | | | | 2. | <u>Fix</u> – | _ to slide (won't off) | | | | | | | | A | | | | | | | | | В | | | | | | | | | C | | | | | | | | | D. HOPEFULLY-prese | erves w/ | | | | | | | Sta | <u>aining</u> | | | | | | | | 1. | Basic dye/ | stain: Colored () ion of a salt | | | | | | | | A. Attracted to (| _) bacterial cell; stains | | | | | | | | B. Crystal violet, meth | hylene blue, safranin, malachite green | | | | | | | | | | | | | | | | | 2/4/2013 | Ch 3 & 4 Microscopy & C | 11 | | | | | | Acidic Dye / Negative S | tain | |-------------------------|----------------------------| | 2. Acidic dye / | stain: Colored () ion | | A& s | stains | | B. For cell | , to detect | | C. Advantage: | (no & stain | | | so accurate size & shape) | | D. Examples: Acid fuc | chsin, nigrosin | | | | | 2/4/2013 Ch 3 8 | & 4 Microscopy & Cell (12 | | Mordant, Simple Stain, Diffe | erential Stain | |---|--------------------| | 3. Mordant: Substance used t
NOTE: This is not the stain that
only helps the stain be more in | t gives color, | | 4. Simple stain: | _basic dye | | A. All microbes | | | B. Only for | | | | | | 5. Differential Stain: Use of | to | | | groups of bacteria | | A. Examples: gram stain, a | cid fast stain | | A Common of the | | | 2/4/2013 (b) Spin 'osco | рру & Ce 👊 🖂 13 | | 2/4/2013 (b) | oscopy & Ce | M i—i | 13 | |--|---|--------------|---------------------------------------| | | | | | | | | | | | Gram Stain Di | agram | | | | | | | Crystal viole lodine Alcohol Safranin | | (1:1/3·) → | | * - (1.37.*) | | | Application of crystal violet (purple dye) | Application of iodine (mordant) Application of iodine (mordant) | | | | • Shapes above? | | | | | • GN or GP? | | | | | • Combine? | | | | | 6. | Gram Stain: differences | | - due | to | | |----|-------------------------|------|---|---|--| | | A. | | = gram positive,
Us | , retain
to penicillin | stain | | | В. | | = gram negative, red, | | stain & | | | | i. | | to penici | llin | | | C. | i. | ining problems Need Some bacteria stain | cultures | | | | | | | timing is | | | | | iv. | Potential | -structures/c
ng procedures NOTE: th | listortions that appear | | | | ow p | ch step, how cell wall o | • | appearance of cells after ing (Chap 4) | | Stains | Stains: Acid Fast & Capsule | | | | | | | |-----------|-----------------------------|--------------------------|--------------------|--|--|--|--| | 7. Acid F | ast Stain | | | | | | | | A. Ac | id-fast positive = | (due to | in cell) | | | | | | B. Ac | cid-fast neg = | | | | | | | | C. ID | | species, | | | | | | | 8. Capsu | ıle Stain (w/ | stain) | | | | | | | A. Ca | psule = | covering on o | utside of bacteria | | | | | | B. Va | riation w/2 stains: | | | | | | | | i. | • | | | | | | | | ii. | | | | | | | | | iii | • | of capsule left be | tween the stains | | | | | | C. Pr | oblems: capsule may | | | | | | | | 2/4/2013 | Ch 3 & 4 Micros | scopy & Cell Componenets | 16 | | | | | | Chapter 4: Prok | caryotic Cells | | |-------------------|--|----| | Prokaryote | | | | 1 | | | | 2 | | | | 3 | | | | 4 | | | | 5. Bacteria – d | cell wall | | | 6. Archaea – _ | | | | 2/4/2013 | Ch 3 & 4 Microscopy & Cell Componenets | 21 | | Cell Wall - Bacteria | | |---|----| | Bacterial Cell Wall | | | 1 | | | | | | | | | 2. Clinical importance | | | , , | | | A | | | | | | В | | | | | | 3 | | | 5 | | | 4. Penicillin interferes | | | | _ | | | | | | | | | | | 2/4/2013 Ch 3 & 4 Microscopy & Cell Componenets | 25 | | Teichoic acid Peptidoglycan layer Cell membrane | (+) Gram (-) Bacterial | |---|------------------------| | Inside Cell | Inside Cell | | Table – GP vs. GN Cell Wall Characteristics | | |---|---| | GP Wall | GN Wall | | 1 | 1 | | 2. Contains | 2. None | | 3. None | OUTER Wall Membrane A. Evades B. Contains C | | 4. None | 4. Periplasm(where peptidoglycan is) A. Contains | | 2/4/2013 Ch 3 8 | 4 Microscopy & Cell Componenets 27 | | Gra | m Stain & the Cell Wall | |--------|--| | Cell W | all & gram stain | | 1. | lodine = | | 2. | Alcohol | | | A. GP: | | | B. GN: | | | C. GP falsely stain GN when cell wall damaged due to | | 3. | GPR/GPB only: | | | A: Bacillus & Clostridium | | | B: Mycobacterium (TB) | | 2/4/20 | 13 Ch 3 & 4 Microscopy & Cell Componenets 28 | # Chemicals & the Cell Wall Chemical Effects on Cell Wall 1. Lysozyme: A. Most effective on 2. Penicillin | xternal Str | res External to Cell Wall uctures | | |-------------|-----------------------------------|---------------------------| | 1. Glyc | ocalyx/Capsule: | | | A. E | EPS (Extracellular polysaccharid | le) & polypeptide polymer | | В | | | | | | Capsules | | C. 1 | Negative Stain, but uses 2 dyes | | | i | . Basic stains | | | i | ii. Acidic stains | | | i | ii | | | | | | | | | Background | | Atypical Cell W Atypical Cell Walls | /alls | | | |-------------------------------------|--------------------|--------------------------|----| | 1. <u>Mycoplasma</u> | species: | | - | | | ount
from lysis | in plasma membrane,
s | | | 2. <u>Mycobacteria</u>
A | <u>a</u> - High | in wall | | | В | | | | | 3. Archea; | | | - | | | | | | | 2/4/2013 | Ch 3 & 4 Microsco | ppy & Cell Componenets | 30 | | External Fi 2. Table: | lamentous Struc | tures | | |-----------------------|---------------------------------|-------------------------|-------------| | <u>Flagella</u> | Axial Filaments | <u>Fimbrae</u> | <u>Pili</u> | | | | | | | | | | | | | | | | | Monotrichous - | | | | | | Spiralled around
cell within | | | | Amphitrichous- | (AKA
endoflagella) | | | | Lophotrichous- | endonagena) | | | | Peritrichous- | Ch 3 & 4 Microso | copy & Cell Componenets | 32 | | External Filamentou | s Structures, Cont'd | | |---------------------|--|----| | 3. NO | | | | 4. Taxis: | | | | A. Chemotaxis | | | | B. Phototaxis | | | | Discuss serovars | | | | | | | | | | | | | | | | 2/4/2013 | Ch 3 & 4 Microscopy & Cell Componenets | 37 | | Endospores | | |---|----| | Structure Internal to Cell Wall | | | 1. Endospores:structures | to | | adverse conditions | | | A. <u>.</u> | | | B. Sporulation / Sporogenesis | | | C. Germination – return tostate | | | D | | | E. Location: | | | F. Survive | | | G. Stains: | | | i. Gram | | | ii. Endospore Stain: | | | Primary: basic stain | | | Rinse: removes stain from | | | Counterstain: basic stain colors | | | 2/4/2013 Ch 3 & 4 Microscopy & Cell Componenets | 38 | | Osmosis & Solution Types | | |---|----| | F. Osmotic Environments | | | i. Isotonic/isoosmotic solution: | | | » . | | | » Water movement | | | » . | | | ii. Hypotonic solution: | _ | | » Net H ₂ O moves | | | » <u>.</u> | | | iii. Hypertonic <u>solution</u> : | _ | | » Net H ₂ O movement | | | » . | | | | | | 2/4/2013 Ch 3 & 4 Microscopy & Cell Componenets | 45 | | | Isotonic solution | Hypotonic solution | Hypertonic solution | |----------------|-------------------|--|------------------------| | Animal
cell | HO HO | HO HO | 140 | | | (1) Normal | (2) Lysed | (3) Shriveled | | Plant
cell | H,O | H ₀ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Plasma
membrane H,O | | | (4) Flaccid | (5) Turgid | (plasmolyzed) | | Inte | ernal Cell Structures continued | | |--------|--|----| | | Chromatophores/thylakoids: | | | 4. | Nucleoid/nuclear area: No nuclear membrane | | | | A. Contains | | | 5. | Plasmids: | | | | A | | | | B. Conjugation: transfer through | | | | i. GN | | | | ii. GP | | | | C. Biotech: | | | 2/4/20 | 13 Ch 3 & 4 Microscopy & Cell Componenets | 48 |